Mark S. T. Anderson
Professor of Architecture, University of California, Berkeley

Animating Construction
Digital modeling, BIM, video and photo-based correspondence in construction design and management have been revolutionizing design and construction communication. To a large extent however, long-standing norms in construction drawing continue to dominate architecture practice and the building industry. Digital models and images offer many new, 3-dimensional opportunities for clearer and more effective communication of ideas in construction drawing. A step beyond this 3-dimensionality in drawings, is the potential to add the fourth dimension of time into the construction drawing. Building construction, always, and increasingly in the contemporary world, is a time-focused process. We build in sequences of construction, yet typical construction drawings conflate many sequential construction processes into dense, static images. BIM and video offers the potential for designers and builders to work on very important issues of time sequence in construction planning, to draw these sequences of events, and to expand the idea of construction documents and communication of building ideas far beyond the still-images we rely on as our current industry standards. Using a variety of case-study examples, this talk will scratch the surface of new thinking about dynamic construction drawings, and suggest a potent future for expanding current drawing and documentation practices.

Peter C. O. Anderson
Professor of Architecture, California College of the Arts, San Francisco

Systematic Timber
Timber construction has returned as a suddenly hot topic in building construction. In many parts of the world wood has long been an important building material, based especially on traditional practices and typically applicable to smaller or specialized structures. Many contemporary innovations are expanding opportunities for wood structural systems in more complex buildings, including fire-safe, higher-rise urban structures. Among the benefits of wood construction are its potential to offer cleaner, more sustainable, resource- and energy-efficient building practices, in addition to its long-standing attraction in providing a warm and humane tradition in structural and experiential beauty and functionality. New approaches to wood technology include both material innovation in product development--laminations, fiber orientation, mass assembly, fire- and decay-resistance, efficiency in use of fast-growing sustainable forestry, carbon sequestration efficiency--and innovation in wood construction practice and application. Prefabrication, modular design and efficient cutting and production methods are just as important to the development of an effective and sustainable new timber-building industry as are
the material innovations. This talk, based on examples and case-studies, will present potentials for systematic applications of timber construction as a promising growth industry in sustainable, high-quality building.